
TAPS: an abstract application interface for QUIC
Mirja Kühlewind

ETH Zurich
mirja.kuehlewind@tik.ee.ethz.ch

Brian Trammell
ETH Zurich

trammell@tik.ee.ethz.ch

Anna Brunstrom
Karlstad University

anna.brunstrom@kau.se

Michael Welzl
michawe@ifi.uio.no
UniversityofOslo

Gorry Fairhurst
gorry@erg.abdn.ac.uk
UniversityofAberdeen

ABSTRACT
The TAPS Architecture for Transport Services [6] provides
a framework for the design of a protocol-independent asyn-
chronous message-based transport API. While the traditional
BSD socket API [1] requires the user to make a choice about
which protocol to use from the beginning, the TAPS API
focuses on transport features and gives the transport stack
itself the opportunity to select the most appropriate proto-
col. This flexibility also supports deployment of new proto-
cols, such as QUIC, because the application does not need to
change in order to benefit from such new innovations. This
poster defines two API mappings for QUIC, either exposing
multistreaming explicitly to the application or providing a
way to utilize multistreaming without application input.
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1 INTRODUCTION
QUIC is a new, encrypted transport protocol originally de-
signed by Google that is currently under standardization
in the IETF. Many of the benefits of QUIC revolve around
the use of multi-streaming — the ability to multiplex sepa-
rate sequences of application data onto a single transport
connection without causing head-of-line blocking between
them. QUIC provides this functionality as an optimization
especially for HTTP. However, this functionality is actually
not new: multi-streaming is, for example, also supported
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by SCTP [7], Adobe’s RTMFP [8] and Structured Streams
(SST) [2]. It can even be retro-fitted into TCP [3, 4].

Even though the mechanisms provided by these protocols
are similar, not all protocols are always available on all plat-
forms. Moreover, protocols typically expose their own API.
Therefore, an application programmer needs to decide at
development time which protocols to use in which scenario
and then write customized code for each of them. This need
to upgrade applications per transport protocol, and not per
function can waste effort, and may well have contributed to
the “ossification” of the Internet’s transport layer [5].

By defining an API that exposes a set of transport services
instead of a specific protocol, applications can be decoupled
from the transport protocols that they use. This decoupling
can have multiple benefits—for example, if a feature such as
multi-streaming is unavailable (e.g., because standard TCP is
the only available choice), a fall back to a reasonable behav-
ior can be generically implemented in a library below the
transport API, relieving the application programmer from
this burden. As new protocols (or protocol mechanisms)
become available (e.g., an upgrade to TCP that allows multi-
streaming), only this library would have to be updated, not
the applications that use it.
The IETF Transport Services (TAPS) Working Group de-

fines such an API [9]. To enable QUIC support within TAPs,
this poster proposes two approaches: an interface mapping
for QUIC where multistreaming is explicitly exposed to the
application and an interface where multistreaming can be
utilized even if the application does not explicitly demand
this transport feature. The next section introduces the TAPS
architecture and general concepts. The two approaches for a
TAPS interface to QUIC are presented and are discussed in
the concluding section.

2 AN ARCHITECTURE FOR TRANSPORT
SERVICES

The TAPS architecture [6] provides a framework for design of
a protocol-independent, asynchronous, and message-based
transport API. In TAPS, communication starts with the cre-
ation of a Preconnection that can be configured and used
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to start a rendezvous process, open listening ports, or trigger
the initiation of a connection. At the point where a actual
transport channel becomes ready, the user is handed a Con-
nection to transmit or receive data.

Data transmission is realized by the transport layer based
onMessages (chunks of data, with certain properties), which
only have a value to the application if received as a whole.
An application could choose not to segment its data and send
a single large message. Usually the decision about how to
segment the data is easy, beccause applications use some
kind of message framing anyway.

At the receiver side, data is also provided to the appliaction
as Messages. However, the boundaries between messages
may not be known for all transports by the receiver. If un-
known, the receiver delivers data in chunks whose size can
be configured and the application itself has to reassemble a
message.

3 APPROACHES FOR A TAPS INTERFACE
3.1 Transport Connection as QUIC Stream
In the TAPS architecture, multiple streams of the same trans-
port connection are exposed to the application by grouping
multiple connections together. Streams can “clone” an ex-
isting connection, instead of initiating a new connection.
If a multistreaming-capable connection, e.g. using QUIC,
is cloned, this leads to creation of a new QUIC stream. If
however TCP was selected by the transport system for this
connection, cloning will open another TCP connection, con-
figured with the same connection parameters. This enables
the transport system to automate fallback if QUIC is unavail-
able or not supported across the path. Similar functionality
is implemented for SCTP streams in the NEAT library1 [10].

The system ensures that QUIC does not fall back to plain
TCP when encryption was required, but instead to TLS over
TCP. Complicating matters further, for HTTP2 applications,
a fallback should use a single TCP connection. Such a fall-
back would need to be realized at the application layer where
HTTP is implemented. Alternatively, if HTTP is used as
pseudo transport, it would also be possible to implement
HTTP below the TAPS API. In this case, the multistream-
ing interface exposed to the application would sit on top of
HTTP.
When multiple streams are exposed as connections, all

messages sent on the same connection are respectivelymapped
to the same bidirectional QUIC stream and sent in-order. This
requires that applications encode the boundaries of messages
within the byte stream, as well as maintain an own message
identifier to allow correlation of replies with outbound mes-
sages if needed.

1Available from https://github.com/NEAT-project/neat

3.2 Transport Connection as QUIC
Connection

An alternative mapping is also possible that utilises the bene-
fits of multistreaming protocols in TAPS even when streams
are not exposed. This is most useful for applications origi-
nally developed for the use with TCP. Use of multistreaming,
however, would enable transmission of independent mes-
sages without head-of-line blocking. However, these applica-
tions may not wish to change their interface to the transport
(e.g. are deployed where TCP as the only available transport).
If the application indicates that messages are independent
with no requirement for in-order delivery, it is easy for the
transport system to select a multiplstreaming protocol and
map exactly one message to one stream. This also enables
the receiver to recognize message boundaries and correctly
deliver messages to the application. The use of bidirectional
streams also make it easy to correlate the responses to previ-
ous request messages. Therefore message framing and iden-
tification can be provided by the transport system as well,
even when a streaming based protocol is used underneath.

4 DISCUSSION
While sending only one message per stream seems on the
first glance to be wasteful, however, it can provide a huge
benefit to applications that do not already define their own
message framing; especially in case of QUIC, where it is
cheap to create and terminate streams. This approach further
allows all messages to be delivered without head-of-line
blocking, which can be especially beneficial for scenarios
with unstable network conditions. Moreover, any message
that expects a reply can use a bidirectional stream, allowing
data returned on the same stream to be interpreted as a reply.
However, this approach does not provide a guarantee of

ordering. An application, that is only able to process mes-
sages in strict order, would need itself to re-order messages
which would eliminate the latency reduction from avoiding
head-of-line blocking. For this style of application, it may be
preferable to send messages that express dependencies on
the same stream and to implement message segmentation
and stream mapping within the application. An application
that already defines message boundaries and semantics can
reduce redundant processing and avoid this overhead by
using an API that exposes streams to the application
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